The Measurement of Statistical Evidence Lecture 5 - part 1

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html

2021

Michael Evans University of Toronto http://jThe Measurement of Statistical Evidence Lec

- recap

- probability model (Ω, \mathcal{F}, P)
- principles of inference concerning unknown value of $\omega\in\Omega$

1. Principle of Conditional Probability: initial belief that $\omega \in A \in \mathcal{F}$ is measured by P(A) and after observing that $\omega \in C$ (via a known information generator), where P(C) > 0, then belief that $\omega \in A$ is measured by $P(A | C) = P(A \cap C)/P(C)$. 2. Principle of Evidence: if P(A | C) > P(A), then the observation that C is true is evidence in favor of A being true, if P(A | C) < P(A), then the observation that C is true is evidence against A being true, and P(A | C) = P(A) is neither evidence in favor nor evidence against A being true.

- 3. Principle of the Relative Belief Ratio: when a numerical measure of evidence is required this is given by the relative belief ratio RB(A | C) = P(A | C)/P(A) (provided P(A) > 0).
- valid measures of evidence satisfy the principle of evidence

Properties of RB

Michael Evans University of Toronto http://\The Measurement of Statistical Evidence Lec

Can it happen that when $A \subset B$ then RB(A | C) > 1 but RB(B | C) < 1?

$$1 = RB(A | C)P(A) + RB(A^{c} \cap B | C)P(A^{c} \cap B) + RB(B^{c} | C)P(B^{c}) = RB(B | C)P(B) + RB(B^{c} | C)P(B^{c}) \text{ so}$$

$$RB(B | C) = RB(A | C)\frac{P(A)}{P(B)} + RB(A^{c} \cap B | C)\frac{P(A^{c} \cap B)}{P(B)} = RB(A | C)P(A | B) + RB(A^{c} \cap B | C)P(A^{c} \cap B | B) < 1 \text{ iff}$$

$$0 \leq P(A | B) < \frac{1 - RB(A^{c} \cap B | C)P(A^{c} \cap B | B)}{RB(A | C)}$$

Example An important lesson about measuring evidence.

- a murder is committed and it is known that an adult member of a town with m adult citizens committed the crime and assume uniform beliefs before evidence is obtained

- evidence obtained C = "a person of ethnic origin *a* committed this crime" and there are $m_1 < m$ adult members of this ethnic group in the town so $P(C) = \frac{m_1}{m}$

- suppose the town contains a university with n adult students of which n_1 are of ethnic origin a

 $P("university student committed the crime") = P(B) = \frac{n}{m}$ and so

$$P(B \mid C) = \frac{P(B \cap C)}{P(C)} = \frac{n_1/m}{m_1/m} = \frac{n_1}{m_1}$$
$$RB(B \mid C) = \frac{P(B \mid C)}{P(B)} = \frac{n_1/m_1}{n/m} = \frac{n_1/n}{m_1/m} < 1 \text{ when } \frac{n_1}{n} < \frac{m_1}{m}$$

 $P("university student of ethnic origin a committed the crime") = <math>P(A) = \frac{n_1}{m}$ and

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{P(A)}{P(C)} = \frac{n_1/m}{m_1/m} = \frac{n_1}{m_1}$$
$$RB(A \mid C) = \frac{P(A \mid C)}{P(A)} = \frac{n_1/m_1}{n_1/m} = \frac{m}{m_1} > 1$$

- so $A \subset B$ and C is evidence if favor of A being true but, if relatively few students of ethnic origin a, then evidence against B.

- in the statistical context with $(\{f_\theta:\theta\in\Omega\},\pi,x)$ and interest in $\psi=\Psi(\theta)$

- let A_{ϵ} be nbds of ψ s.t. $A_{\epsilon} \stackrel{nicely}{
ightarrow} \{\psi\}$ as $\epsilon
ightarrow 0$, then

$$\mathsf{RB}_{\Psi}(\psi \,|\, x) \stackrel{\mathsf{def.}}{=} \lim_{\epsilon \to 0} \frac{\Pi_{\Psi}(\mathsf{A}_{\epsilon} \,|\, x)}{\Pi_{\Psi}(\mathsf{A}_{\epsilon})} \stackrel{\mathsf{conditions}}{=} \frac{\pi_{\Psi}(\psi \,|\, x)}{\pi_{\Psi}(\psi)}$$

whenever π_{Ψ} is positive and continuous at ψ

- $RB(\psi \,|\, x) > 1$ says there is evidence in favor of ψ , $RB(\psi \,|\, x) < 1$ says there is evidence against ψ and $RB(\psi \,|\, x) = 1$ says there is no evidence either way

- the values $RB(\psi | x)$ order the possible values of $\psi \in \Psi$ but only when the values in Ψ are similar in nature (so they can be compared)

- this ordering is the same for any 1-1 transformation of $RB(\psi \,|\, x)$ such as $\log RB(\psi \,|\, x) = \log \pi_{\Psi}(\psi \,|\, x) - \log \pi_{\Psi}(\psi)$

< 個 → < 注 → < 注 → □ 注

- also if $\xi = \Xi(\psi)$ is a "smooth" bijection, then

$$RB_{\Xi}(\xi \mid x) = \frac{\pi_{\Xi}(\xi \mid x)}{\pi_{\Xi}(\xi)} = \frac{\pi_{\Psi}(\Xi^{-1}(\xi) \mid x) J_{\Xi}(\Xi^{-1}(\xi))}{\pi_{\Psi}(\Xi^{-1}(\xi)) J_{\Xi}(\Xi^{-1}(\xi))} = RB_{\Psi}(\Xi^{-1}(\xi) \mid x)$$

so inferences based on the relative belief ratio are invariant under repars

E : the estimate of $\psi = \Psi(\theta)$ is given by $\psi(x) = \sup\{RB_{\Psi}(\psi \mid x) : \psi \in \Psi\}$ (as this maximizes the evidence in favor) and the accuracy of this estimate is assessed via the size and posterior content of the *plausible region (positive evidence region)*

$$Ph_{\Psi}(x) = \{\psi : RB_{\Psi}(\psi \,|\, x) > 1\}$$

and call $\psi(x)$ the relative belief estimate

- so if Pl(x) is "small" and $\Pi_{\Psi}(Pl_{\Psi}(x)\,|\,x)$ is high, then we have an accurate estimate of ψ

- note: size is not invariant but recall our specification of the difference that matters δ as this is not invariant either

- invariance allows doing calculations in a convenient parameterization and then transforming back

021 7/15

- note - when $\Psi(\theta) = \theta$, then $RB(\theta \mid x) = \frac{\pi(\theta \mid x)}{\pi(\theta)} = \frac{\pi(\theta)f_{\theta}(x)}{m(x)\pi(\theta)} = \frac{f_{\theta}(x)}{m(x)}$ and so $\theta(x)$ is the MLE and $Pl_{\Psi}(x) = \{\theta : \frac{f_{\theta}(x)}{m(x)} > 1\}$ is a likelihood region but note you can't multiply $RB(\theta \mid x)$ by a constant and retain its interpretation in terms of evidence

- also, there is the Savage-Dickey ratio result

$$\begin{aligned} \mathsf{RB}_{\Psi}(\psi \,|\, x) &= \frac{\pi_{\Psi}(\psi \,|\, x)}{\pi_{\Psi}(\psi)} = \frac{1}{\pi_{\Psi}(\psi)} \int_{\Psi^{-1}\{\psi\}} \pi(\theta \,|\, x) J_{\Psi}(\theta) \,d\theta \\ &= \frac{1}{\pi_{\Psi}(\psi)} \int_{\Psi^{-1}\{\psi\}} \frac{f_{\theta}(x)\pi(\theta)}{m(x)} J_{\Psi}(\theta) \,d\theta \\ &= \frac{1}{m(x)} \int_{\Psi^{-1}\{\psi\}} f_{\theta}(x) \frac{\pi(\theta)J_{\Psi}(\theta)}{\pi_{\Psi}(\psi)} \,d\theta \\ &= \frac{1}{m(x)} \int_{\Psi^{-1}\{\psi\}} f_{\theta}(x)\pi(\theta \,|\, \psi) \,d\theta = \frac{m(x \,|\, \psi)}{m(x)} \end{aligned}$$

- note - $m(x | \psi) = \int_{\Psi^{-1}\{\psi\}} f_{\theta}(x) \pi(\theta | \psi) d\theta$ is an integrated likelihood and so generally $\psi(x)$ is an MLE (unlike profiling)

2021 8 / 15

- note - $\psi(x)$ depends on using $RB_{\Psi}(\cdot | x)$ to order the possible values but $Pl_{\Psi}(x)$ is the same no matter what valid measure of evidence is used which suggests that other estimates based on a valid measure of evidence could be used, as they all have the same accuracy as provided by $Pl_{\Psi}(x)$

- also, instead of quoting ${\it Pl}_{\Psi}(x)$ for assessing accuracy, a $\gamma\text{-relative belief region}$

$$\mathcal{C}_{\Psi,\gamma}(x) = \{\psi: \mathcal{H}_{\Psi}(\mathcal{RB}_{\Psi}(\psi \,|\, x) \,|\, x) \geq 1 - \gamma\},$$

where $H_{\Psi}(\cdot | x)$ is the posterior cdf of $RB_{\Psi}(\cdot | x)$ so $\Pi_{\Psi}(C_{\Psi,\gamma}(x) | x) \ge \gamma$, can be quoted **but** it is necessary that $\gamma \le \Pi_{\Psi}(Pl_{\Psi}(x) | x)$ otherwise $C_{\Psi,\gamma}(x)$ will contain values of ψ for which there is evidence against

- so a relevant γ can only be determined after seeing the data

H : to assess $H_0: \Psi(\theta) = \psi_0$ quote $RB_{\Psi}(\psi_0 | x)$ to determine if there is evidence in favor (> 1) or against (< 1)

- to measure the strength of the evidence quote

$$\Pi_{\Psi}(RB_{\Psi}(\psi_0 \,|\, x) \le RB_{\Psi}(\psi_0 \,|\, x) \,|\, x)$$

which gives posterior belief that the true value has evidence no greater than that for the hypothesized value

- so when $RB_{\Psi}(\psi_0 \,|\, x) > 1$ and strength ≈ 1 , then there is strong evidence in favor of H_0 and if $RB_{\Psi}(\psi_0 \,|\, x) < 1$ and strength ≈ 0 , then there is strong evidence against H_0

- note - whether or not there is evidence in favor or against is independent of the valid measure of evidence used but the strength is dependent on this

- alternatively, to measure strength of the evidence you could quote $Pl_{\Psi}(x)$ and $\Pi_{\Psi}(Pl_{\Psi}(x) \mid x)$ when $RB_{\Psi}(\psi_0 \mid x) > 1$ since $\psi_0 \in Pl_{\Psi}(x)$ and it is now the natural "estimate" of ψ or when $RB_{\Psi}(\psi_0 \mid x) < 1$, quote the *implausible region* $Im_{\Psi}(x) = \{\psi : RB_{\Psi}(\psi \mid x) < 1\}$ and $\Pi_{\Psi}(Im_{\Psi}(x) \mid x)$

Bayes Factors

- often misdefined

- for probability model (Ω, \mathcal{F}, P) and $A \in \mathcal{F}$ with 0 < P(A) < 1 and having observed that $C \in \mathcal{F}$ is true with P(XC) > 0, the *Bayes factor in favor of A* is

$$BF(A \mid C) = \frac{P(A \mid C)}{P(A^c \mid C)} / \frac{P(A)}{P(A^c)} = \frac{\text{posterior odds in favor of } A}{\text{prior odds in favor of } A}$$

Lemma $BF(A \mid C) > (<, =) \ 1 \text{ iff } P(A \mid C) > (<, =) \ P(A).$

Proof:

$$1 < BF(A \mid C) \text{ iff } \frac{P(A)}{1 - P(A)} < \frac{P(A \mid C)}{1 - P(A \mid C)} \text{ iff } \frac{1}{P(A)} > \frac{1}{P(A \mid C)}$$

- so the BF satisfies the principle of evidence

- note - $BF(A \mid C) = \frac{P(A \mid C)}{P(A)} / \frac{P(A^c \mid C)}{P(A^c)} = \frac{RB(A \mid C)}{RB(A^c \mid C)}$ but $RB(A \mid C) > 1$ iff $RB(A^c \mid C) < 1$ so it is not a comparison of the evidence for A with the evidence for A^c and you can't express the BF in terms of the RB

- why do we want to compare odds as opposed to probabilities anyway? $_{\sim\sim\sim}$

- the continuous (Bayesian) case: when $\Pi_{\Psi}(\{\psi_0\})=0$ the BF is not defined

- for the *RB* we defined this in terms of a limit of nbds A_{ε} converging to ψ_0 so $RB_{\Psi}(\psi_0 \mid x) = \lim_{\varepsilon \to 0} \Pi_{\Psi}(A_{\varepsilon} \mid x) / \Pi_{\Psi}(A_{\varepsilon})$

- the natural thing to do then with the BF is to define it as

$$BF_{\Psi}(\psi_{0} | x) = \lim_{\varepsilon \to 0} \frac{\Pi_{\Psi}(A_{\varepsilon} | x)}{\Pi_{\Psi}(A_{\varepsilon}^{c} | x)} / \frac{\Pi_{\Psi}(A_{\varepsilon})}{\Pi_{\Psi}(A_{\varepsilon})} = \lim_{\varepsilon \to 0} \frac{\Pi_{\Psi}(A_{\varepsilon} | x)}{\Pi_{\Psi}(A_{\varepsilon})} / \frac{\Pi_{\Psi}(A_{\varepsilon}^{c} | x)}{\Pi_{\Psi}(A_{\varepsilon})}$$
$$= \frac{RB_{\Psi}(\psi_{0} | x)}{RB_{\Psi}(\{\psi_{0}\}^{c} | x)} = RB_{\Psi}(\psi_{0} | x) \text{ when } \Pi_{\Psi}(\{\psi_{0}\}) = 0$$

and so the BF and RB would agree in the continuous case

- but that is not what is recommended in the continuous case where $\Pi_{\Psi}(\{\psi_0\})=0$

- rather it is recommended that the prior Π be changed by specifying (i) a prob. $p\in(0,1)$

(ii) a conditional prior $\Pi^*(\cdot \mid H_0)$ for $\theta \in H_0 = \Psi^{-1}\{\psi_0\}$

(iii) a conditional prior $\Pi^*(\cdot \mid H_0^c)$ for $\theta \in H_0^c$ (which is typically Π) then use the prior (sometimes called a *sharp prior*)

$$\Pi^* = p\Pi^*(\cdot \mid H_0) + (1-p)\Pi^*(\cdot \mid H_0^c)$$

as then

$$BF(H_0 \mid x) = \frac{\Pi^*(H_0 \mid x)}{\Pi^*(H_0^c \mid x)} / \frac{\Pi^*(H_0)}{\Pi^*(H_0^c)}$$

= $\frac{p \int_{H_0} f_{\theta}(x) \Pi^*(d\theta \mid H_0)}{(1-p) \int_{H_0^c} f_{\theta}(x) \Pi^*(d\theta \mid H_0^c)} / \frac{p}{1-p} = \frac{m(x \mid H_0)}{m(x \mid H_0^c)}$

which is a likelihood ratio

- in general $BF(H_0 | x) \neq RB_{\Psi}(\psi_0 | x)$ and $BF(H_0 | x)$ suffers from "information inconsistency" which $RB_{\Psi}(\psi_0 | x)$ does not

Example location-scale normal

- $\{N(\mu, \sigma^2) : \mu \in \mathbb{R}^1, \sigma^2 > 0\}, \Psi(\mu, \sigma^2) = \mu, H_0 : \Psi(\mu, \sigma^2) = \mu_0$ and sample of n giving

$$L(\mu, \sigma^2 \mid x) = (2\pi\sigma^2)^{-n/2} \exp\{-[n(\bar{x} - \mu)^2 + s^2]/2\sigma^2\}$$

and prior (see Example 5.3.1 for elicitation of hyperparameters)

$$\begin{array}{ll} \mu \,|\, \sigma^2 & \sim & \mathcal{N}(\mu_0, \tau_0^2 \sigma^2) \\ \\ \frac{1}{\sigma^2} & \sim & \mathsf{gamma}(\alpha_0, \beta_0) \\ \\ \mu & \sim & \mu_0 + \sqrt{\tau_0^2 \beta_0 / \alpha_0} t_{2\alpha_0} \end{array}$$

- then

$$RB_{\Psi}(\mu \mid x) = \frac{\int_{0}^{\infty} L(\mu, \sigma^{2} \mid x)(\tau_{0}^{2}\sigma^{2})^{-1/2}\varphi\left(\frac{\mu-\mu_{0}}{(\tau_{0}^{2}\sigma^{2})^{1/2}}\right)\pi(1/\sigma^{2}) d(1/\sigma^{2})}{m(x)\pi(\mu)}$$

$$RB_{\Psi}(\mu_{0} \mid x) = \frac{\int_{0}^{\infty} L(\mu_{0}, \sigma^{2} \mid x)(\tau_{0}^{2}\sigma^{2})^{-1/2}\varphi(0)\pi(1/\sigma^{2}) d(1/\sigma^{2})}{m(x)\pi(\mu_{0})}$$

- with sharp prior

$$\begin{split} \mu \, | \, \sigma^2 &\sim \quad p \delta_{\mu_0} + (1-p) \mathcal{N}(\mu_0, \tau_0^2 \sigma^2) \\ \frac{1}{\sigma^2} &\sim \quad \text{gamma}(\alpha_0, \beta_0) \\ \mu &\sim \quad p \mu_0 + (1-p) \pi(\mu) \end{split}$$

so

$$BF(H_0 | x) = \frac{\int_0^\infty L(\mu_0, \sigma^2 | x) \pi(1/\sigma^2) d(1/\sigma^2)}{m(x)}$$

Michael Evans University of Toronto http://\The Measurement of Statistical Evidence Lec

æ

イロト イヨト イヨト イヨト