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- recap
- probability model (Q), F, P)
- principles of inference concerning unknown value of w € Q)

1. Principle of Conditional Probability: initial belief that

w € A € F is measured by P(A) and after observing that w € C
(via a known information generator), where P(C) > 0, then
belief that w € A is measured by P(A| C) = P(ANC)/P(C).
2. Principle of Evidence: if P(A| C) > P(A), then the
observation that C is true is evidence in favor of A being true, if
P(A| C) < P(A), then the observation that C is true is evidence
against A being true, and P(A| C) = P(A) is neither evidence in
favor nor evidence against A being true.

3. Principle of the Relative Belief Ratio: when a numerical
measure of evidence is required this is given by the relative belief
ratio RB(A| C) = P(A| C)/P(A) (provided P(A) > 0).

- valid measures of evidence satisfy the principle of evidence
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Properties of RB

. C
Q@ (Savage-Dickey) RB(A| C) = 555 = RB(C | A)
a1 FRB(A[C)>1
c 1 :
@ RB(A°|C) = PARBAIO > 1 if RB(A| ) <1
=1 ifRB(A|C)=1
@ 0<RB(A|C) < ( 7. lower bound attained when P(A|C)=0
(e.g. ANC = ¢), upper bound attained when P(A|C) =1 (e.g.
C C A) and so no universal scale
RB(A|BNC)RB(B|C
@ RB(ANB|C) = REALZLAREEIC) —
{ RB(A|C)RB(B|C)

RE(A[B) when A, B cond. ind. given C
RB(A|C)RB(B|C) when A, B cond. ind. given C and ind.
Q ifQ= Uf-‘zlA,-,A,- NA; = ¢ when i # j, P(A;) > 0 for all i,

P(Q[C) K :
1= — RB(U_,Ai| C) RB(A; | C)P(A,
PO (U1 A | ; (Ai| C)P(A))
Proof: 1= RB(UK_,A;| C) = PLUSALO _ sk pB(A.| C)P(A)
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Can it happen that when A C B then RB(A|C) > 1 but RB(B|C) < 1?

= RB(A]C)P(A)+RB(ACHB]C)P(ACDB)Jr
RB(B® | C)P(B*)
(B| C)P(B) + RB(B® | C)P(BF) so
RB(B|C) = RB(A|C)£E’;;+RB(ACHB|C)P(';\(;)B)
RB(A|C)P(A| B) + RB(A°NB| C)P(ASNB|B) < 1iff
1~ RB(A°N B| C)P(A°N B|B)

RB(A| C)

= RB

0 < P(A|B)<

Example An important lesson about measuring evidence.

- a murder is committed and it is known that an adult member of a town
with m adult citizens committed the crime and assume uniform beliefs
before evidence is obtained

- evidence obtained C = "a person of ethnic origin a committed this
crime” and there are m; < m adult members of this ethnic group in the
town so P(C) =™

m
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- suppose the town contains a university with n adult students of which n;

are of ethnic origin a

P (" university student committed the crime”) = P(B) = - and so

P(BNC) _ m/m _ nm

P(BIC) = P(C) — m/m m
RB(B|C) = PEDB(|B)C) = nnl//l;nl = njll//:q < 1 when n—nl < %

P(" university student of ethnic origin a committed the crime")

= P(A) = 2 and
P(ANC) _P(A) _ m/m _m

PAAIC) = P(C) ~ P(C) m/m m
_ PA|IC)  m/mi _ m
RB(A|C) = P = mym

-so A C B and C is evidence if favor of A being true but, if relatively few
students of ethnic origin a, then evidence against B
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- in the statistical context with ({fy : 6 € Q}, 71, x) and interest in
p="¥(0)
nicely

- let Ac be nbds of P s.t. Ac = {¢} as e — 0, then

X def . - M conditions 7T‘Y(¢|X)
R0 = I Thta) @)

whenever 7Ty is positive and continuous at ¢

- RB(| x) > 1 says there is evidence in favor of {, RB(1 | x) < 1 says
there is evidence against ¢ and RB(i | x) = 1 says there is no evidence
either way

- the values RB(1 | x) order the possible values of ¢ € ¥ but only when
the values in ¥ are similar in nature (so they can be compared)

- this ordering is the same for any 1-1 transformation of RB(¢ | x) such as
log RB(y | x) = log ¥ (¢ | x) — log rrw (1)
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- also if { = E(y) is a "smooth" bijection, then

ma(€lx) _ my(EE) [0EEE) _ ps i
B =" T e @kE ) o O

so inferences based on the relative belief ratio are invariant under repars

E : the estimate of {p = ¥(0) is given by

P(x) = sup{RBy (| x) : p € ¥} (as this maximizes the evidence in
favor) and the accuracy of this estimate is assessed via the size and
posterior content of the plausible region (positive evidence region)

Phe(x) = {: RBy (| x) > 1}
and call P(x) the relative belief estimate

- so if PI(x) is "small" and ITy (Pks(x) | x) is high, then we have an
accurate estimate of ¥

- note: size is not invariant but recall our specification of the difference
that matters J as this is not invariant either

- invariance allows doing calculations in a convenient parameterization and
then transforming back
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- note - when ¥(0) = 6, then RB(6 | x) nff(l);) = r:((i))?}((;)) = ;97(();)) and

so 0(x) is the MLE and Ply(x) = {6 : 2((;()) > 1} is a likelihood region but
note you can’t multiply RB(6 | x) by a constant and retain its
interpretation in terms of evidence

- also, there is the Savage-Dickey ratio result

eyl 1
RBy(plx) = T = A gy (01X 0(0) 00
1 600 (0)
) /flw} m(x) H(0) 6
! 7(6) e (6)
= 20 Jeore " )
= oy, OO ) a0 = o )

- note - m(x|¢p) = f‘Y’l{lP} fo(x)mt (0] ) d is an integrated likelihood
and so generally {(x) is an MLE (unlike profiling)
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- note - ¢(x) depends on using RBy (- | x) to order the possible values but
Py (x) is the same no matter what valid measure of evidence is used
which suggests that other estimates based on a valid measure of evidence
could be used, as they all have the same accuracy as provided by Phy(x)

- also, instead of quoting Phy(x) for assessing accuracy, a 7y-relative belief
region

Gy (x) = {: Hy(RBy (¢ [x) |x) = 1 =7},

where Hy (- | x) is the posterior cdf of RBy (- | x) so ITy(Cy (x)|x) > 7,
can be quoted but it is necessary that v < ITy(Phy(x) | x) otherwise
Gy, (x) will contain values of i for which there is evidence against

- so a relevant 7y can only be determined after seeing the data
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H : to assess Hy : ¥(6) = 1, quote RBy (1, | x) to determine if there is
evidence in favor (> 1) or against (< 1)

- to measure the strength of the evidence quote

ITy (RBy (1, | x) < RBy (9, | x) | x)

which gives posterior belief that the true value has evidence no greater
than that for the hypothesized value

- so when RBy (1, | x) > 1 and strength ~ 1, then there is strong
evidence in favor of Hy and if RBy (1, | x) < 1 and strength ~ 0, then
there is strong evidence against Hy

- note - whether or not there is evidence in favor or against is independent
of the valid measure of evidence used but the strength is dependent on this

- alternatively, to measure strength of the evidence you could quote

Pl (x) and ITy (Phy(x) | x) when RBy (1, | x) > 1 since ¢, € Phy(x) and
it is now the natural "estimate" of 1 or when RBy (1, | x) < 1, quote the
implausible region Imy(x) = {¢ : RBy (| x) < 1} and ITy(Imy(x) | x)
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Bayes Factors
- often misdefined

- for probability model (Q), F, P) and A € F with 0 < P(A) <1 and
having observed that C € F is true with P(XC) > 0, the Bayes factor in
favor of A'is

P(A|C) / P(A) _ posterior odds in favor of A
P(Ac|C)" P(Ac) prior odds in favor of A

Lemma BF(A|C) > (<, =) 1iff P(A|C) > (<,=) P(A).
Proof:

BF(A| C) =

P(A) P(A|C) . 1 1
T=P(A) “T=P(A[C) " P(A) ~ P(A[C)

- so the BF satisfies the principle of evidence

P(A|C) ,P(A°|C RB(A| C .
- note - BF(A| C) = Zgs) / BUTs) = JU0S but RB(A| C) > 1 iff
RB(A<| C) < 1 so it is not a comparison of the evidence for A with the

evidence for A and you can't express the BF in terms of the RB

1< BF(A|C) iff

- why do we want to compare odds as opposed to, probabilities anyway?
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- the continuous (Bayesian) case: when ITy({1,}) = 0 the BF is not
defined

- for the RB we defined this in terms of a limit of nbds A, converging to
171]0 SO RB\{J(T’bO ‘ X) = |img_>0 Hly(Ag ’X)/HIP(AS)

- the natural thing to do then with the BF is to define it as

e Ty (Ac|x)  Toy(A) o TTy(Ac|x) [ TTy(AS | x)
BFy($ox) = Im AT/ Ty (A) — o™ Thy(A) | The(AS)

RBo(9 %) _ !
RBa((p.Je ) ~ REx(Wol ) when Tlx({yo}) =0

and so the BF and RB would agree in the continuous case

- but that is not what is recommended in the continuous case where

Iy ({¢p}) =0
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- rather it is recommended that the prior Il be changed by specifying
(i) a prob. p € (0,1)

(ii)a conditional prior IT*(- | Hp) for 6 € Hy = ¥~ {y,}

(iii) a conditional prior IT*(- | H§) for 6 € H§ (which is typically IT)
then use the prior (sometimes called a sharp prior)

IT" = pIT*(- | Ho) + (1 — p)IT* (- | Hy)

as then
H*(Ho!X) IT* (Ho)
BF (Hy | x) = T (FE | )/ T (HS)
ol x>H*<d9|Ho> p_ mix| )

fHche (d9|Ho) _P_m(X|H3)

which is a likelihood ratio

- in general BF(Hp | x) # RBy (4, | x) and BF (Hj | x) suffers from
"information inconsistency" which RBy (1, | x) does not
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Example /ocation-scale normal
-{N(u,0?):pe R, 0®>>0},¥(pu,0%) = p, Ho : ¥(p,0%) = py and
sample of n giving
L(p, 02| x) = (2m0?) "2 exp{—[n(x — u)? + s%] /20>
and prior (see Example 5.3.1 for elicitation of hyperparameters)

ulo® ~ N(uy t50°)

1
=z~ gamma(ao, )

B~ Hot \V T%ﬁo/"‘otﬂco

- then
fo°° L(V' (72 |X)(T%U2)_l/2(l) <(T%l;2‘1;?/2> 7((1/0’2) d(1/02)
RBy (o |x) = Jo Hito-0 |X)(TOZ72X)7/T((I’;§;)) n(1/0%)d(1/c%)
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- with sharp prior

H1? ~ oy + (1= p)N (g, Th?)
1
p

o~ pug+(1—p)r(n)

~ gamma(ag, B,)

BF(Ho | x) = Jo Llpg. | x)7e(1/0°) d(1/07)

m(x)
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