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- recap

- probability model (Ω,F ,P)
- principles of inference concerning unknown value of ω 2 Ω

1. Principle of Conditional Probability: initial belief that
ω 2 A 2 F is measured by P(A) and after observing that ω 2 C
(via a known information generator), where P(C ) > 0, then
belief that ω 2 A is measured by P(A jC ) = P(A\ C )/P(C ).
2. Principle of Evidence: if P(A jC ) > P(A), then the
observation that C is true is evidence in favor of A being true, if
P(A jC ) < P(A), then the observation that C is true is evidence
against A being true, and P(A jC ) = P(A) is neither evidence in
favor nor evidence against A being true.
3. Principle of the Relative Belief Ratio: when a numerical
measure of evidence is required this is given by the relative belief
ratio RB(A jC ) = P(A jC )/P(A) (provided P(A) > 0).

- valid measures of evidence satisfy the principle of evidence
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Properties of RB

1 (Savage-Dickey) RB(A jC ) = P (A\C )
P (A)P (C ) = RB(C jA)

2 RB(Ac jC ) = 1�P (A)RB (A jC )
1�P (A)

< 1 if RB(A jC ) > 1
> 1 if RB(A jC ) < 1
= 1 if RB(A jC ) = 1

3 0 � RB(A jC ) � 1
P (A) , lower bound attained when P(A jC ) = 0

(e.g. A\ C = φ), upper bound attained when P(A jC ) = 1 (e.g.
C � A) and so no universal scale

4 RB(A\ B jC ) = RB (A jB\C )RB (B jC )
RB (A jB ) =(

RB (A jC )RB (B jC )
RB (A jB ) when A,B cond. ind. given C

RB(A jC )RB(B jC ) when A,B cond. ind. given C and ind.
5 if Ω = [ki=1Ai ,Ai \ Aj = φ when i 6= j ,P(Ai ) > 0 for all i ,

1 =
P(Ω jC )
P(Ω)

= RB([ki=1Ai jC ) =
k

∑
i=1
RB(Ai jC )P(Ai )

Proof: 1 = RB([ki=1Ai jC ) =
P ([ki=1Ai jC )
P ([ki=1Ai )

= ∑k
i=1 RB(Ai jC )P(Ai )
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Can it happen that when A � B then RB(A jC ) > 1 but RB(B jC ) < 1?

1 = RB(A jC )P(A) + RB(Ac \ B jC )P(Ac \ B ) +
RB(Bc jC )P(Bc )

= RB(B jC )P(B) + RB(Bc jC )P(Bc ) so

RB(B jC ) = RB(A jC )P(A)
P(B)

+ RB(Ac \ B jC )P(A
c \ B)
P(B)

= RB(A jC )P(A jB) + RB(Ac \ B jC )P(Ac \ B jB) < 1 i¤

0 � P(A jB) < 1� RB(Ac \ B jC )P(Ac \ B jB)
RB(A jC )

Example An important lesson about measuring evidence.

- a murder is committed and it is known that an adult member of a town
with m adult citizens committed the crime and assume uniform beliefs
before evidence is obtained

- evidence obtained C = "a person of ethnic origin a committed this
crime" and there are m1 < m adult members of this ethnic group in the
town so P(C ) = m1

m
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- suppose the town contains a university with n adult students of which n1
are of ethnic origin a

P("university student committed the crime") = P(B) = n
m and so

P(B jC ) =
P(B \ C )
P(C )

=
n1/m
m1/m

=
n1
m1

RB(B jC ) =
P(B jC )
P(B)

=
n1/m1
n/m

=
n1/n
m1/m

< 1 when
n1
n
<
m1
m

P("university student of ethnic origin a committed the crime")

= P(A) = n1
m and

P(A jC ) =
P(A\ C )
P(C )

=
P(A)
P(C )

=
n1/m
m1/m

=
n1
m1

RB(A jC ) =
P(A jC )
P(A)

=
n1/m1
n1/m

=
m
m1

> 1

- so A � B and C is evidence if favor of A being true but, if relatively few
students of ethnic origin a, then evidence against B
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- in the statistical context with (ffθ : θ 2 Ωg,π, x) and interest in
ψ = Ψ(θ)

- let Aε be nbds of ψ s.t. Aε
nicely! fψg as ε ! 0, then

RBΨ(ψ j x)
def .
= lim

ε!0
ΠΨ(Aε j x)

ΠΨ(Aε)
conditions
=

πΨ(ψ j x)
πΨ(ψ)

whenever πΨ is positive and continuous at ψ

- RB(ψ j x) > 1 says there is evidence in favor of ψ,RB(ψ j x) < 1 says
there is evidence against ψ and RB(ψ j x) = 1 says there is no evidence
either way

- the values RB(ψ j x) order the possible values of ψ 2 Ψ but only when
the values in Ψ are similar in nature (so they can be compared)

- this ordering is the same for any 1-1 transformation of RB(ψ j x) such as
logRB(ψ j x) = logπΨ(ψ j x)� logπΨ(ψ)
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- also if ξ = Ξ(ψ) is a "smooth" bijection, then

RBΞ(ξ j x) =
πΞ(ξ j x)

πΞ(ξ)
=

πΨ(Ξ�1(ξ) j x)JΞ(Ξ�1(ξ))
πΨ(Ξ�1(ξ))JΞ(Ξ�1(ξ))

= RBΨ(Ξ�1(ξ) j x)

so inferences based on the relative belief ratio are invariant under repars

E : the estimate of ψ = Ψ(θ) is given by
ψ(x) = supfRBΨ(ψ j x) : ψ 2 Ψg (as this maximizes the evidence in
favor) and the accuracy of this estimate is assessed via the size and
posterior content of the plausible region (positive evidence region)

PlΨ(x) = fψ : RBΨ(ψ j x) > 1g
and call ψ(x) the relative belief estimate

- so if Pl(x) is "small" and ΠΨ(PlΨ(x) j x) is high, then we have an
accurate estimate of ψ

- note: size is not invariant but recall our speci�cation of the di¤erence
that matters δ as this is not invariant either

- invariance allows doing calculations in a convenient parameterization and
then transforming back
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- note - when Ψ(θ) = θ, then RB(θ j x) = π(θ j x )
π(θ)

= π(θ)fθ(x )
m(x )π(θ) =

fθ(x )
m(x ) and

so θ(x) is the MLE and PlΨ(x) = fθ : fθ(x )m(x ) > 1g is a likelihood region but
note you can�t multiply RB(θ j x) by a constant and retain its
interpretation in terms of evidence

- also, there is the Savage-Dickey ratio result

RBΨ(ψ j x) =
πΨ(ψ j x)

πΨ(ψ)
=

1
πΨ(ψ)

Z
Ψ�1fψg

π(θ j x)JΨ(θ) dθ

=
1

πΨ(ψ)

Z
Ψ�1fψg

fθ(x)π(θ)
m(x)

JΨ(θ) dθ

=
1

m(x)

Z
Ψ�1fψg

fθ(x)
π(θ)JΨ(θ)

πΨ(ψ)
dθ

=
1

m(x)

Z
Ψ�1fψg

fθ(x)π(θ jψ) dθ =
m(x jψ)
m(x)

- note - m(x jψ) =
R

Ψ�1fψg fθ(x)π(θ jψ) dθ is an integrated likelihood

and so generally ψ(x) is an MLE (unlike pro�ling)
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- note - ψ(x) depends on using RBΨ(� j x) to order the possible values but
PlΨ(x) is the same no matter what valid measure of evidence is used
which suggests that other estimates based on a valid measure of evidence
could be used, as they all have the same accuracy as provided by PlΨ(x)

- also, instead of quoting PlΨ(x) for assessing accuracy, a γ-relative belief
region

CΨ,γ(x) = fψ : HΨ(RBΨ(ψ j x) j x) � 1� γg,
where HΨ(� j x) is the posterior cdf of RBΨ(� j x) so ΠΨ(CΨ,γ(x) j x) � γ,
can be quoted but it is necessary that γ � ΠΨ(PlΨ(x) j x) otherwise
CΨ,γ(x) will contain values of ψ for which there is evidence against

- so a relevant γ can only be determined after seeing the data
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H : to assess H0 : Ψ(θ) = ψ0 quote RBΨ(ψ0 j x) to determine if there is
evidence in favor (> 1) or against (< 1)

- to measure the strength of the evidence quote

ΠΨ(RBΨ(ψ0 j x) � RBΨ(ψ0 j x) j x)

which gives posterior belief that the true value has evidence no greater
than that for the hypothesized value

- so when RBΨ(ψ0 j x) > 1 and strength � 1, then there is strong
evidence in favor of H0 and if RBΨ(ψ0 j x) < 1 and strength � 0, then
there is strong evidence against H0

- note - whether or not there is evidence in favor or against is independent
of the valid measure of evidence used but the strength is dependent on this

- alternatively, to measure strength of the evidence you could quote
PlΨ(x) and ΠΨ(PlΨ(x) j x) when RBΨ(ψ0 j x) > 1 since ψ0 2 PlΨ(x) and
it is now the natural "estimate" of ψ or when RBΨ(ψ0 j x) < 1, quote the
implausible region ImΨ(x) = fψ : RBΨ(ψ j x) < 1g and ΠΨ(ImΨ(x) j x)
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Bayes Factors

- often misde�ned

- for probability model (Ω,F ,P) and A 2 F with 0 < P(A) < 1 and
having observed that C 2 F is true with P(XC ) > 0, the Bayes factor in
favor of A is

BF (A jC ) = P(A jC )
P(Ac jC )/

P(A)
P(Ac )

=
posterior odds in favor of A
prior odds in favor of A

Lemma BF (A jC ) > (<,=) 1 i¤ P(A jC ) > (<,=) P(A).
Proof:

1 < BF (A jC ) i¤ P(A)
1� P(A) <

P(A jC )
1� P(A jC ) i¤

1
P(A)

>
1

P(A jC )
- so the BF satis�es the principle of evidence

- note - BF (A jC ) = P (A jC )
P (A) /P (A

c jC )
P (Ac ) = RB (A jC )

RB (Ac jC ) but RB(A jC ) > 1 i¤
RB(Ac jC ) < 1 so it is not a comparison of the evidence for A with the
evidence for Ac and you can�t express the BF in terms of the RB

- why do we want to compare odds as opposed to probabilities anyway?
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- the continuous (Bayesian) case: when ΠΨ(fψ0g) = 0 the BF is not
de�ned

- for the RB we de�ned this in terms of a limit of nbds Aε converging to
ψ0 so RBΨ(ψ0 j x) = limε!0 ΠΨ(Aε j x)/ΠΨ(Aε)

- the natural thing to do then with the BF is to de�ne it as

BFΨ(ψ0 j x) = lim
ε!0

ΠΨ(Aε j x)
ΠΨ(Acε j x)

/
ΠΨ(Aε)

ΠΨ(Acε )
= lim

ε!0
ΠΨ(Aε j x)

ΠΨ(Aε)
/

ΠΨ(Acε j x)
ΠΨ(Acε )

=
RBΨ(ψ0 j x)

RBΨ(fψ0gc j x)
= RBΨ(ψ0 j x) when ΠΨ(fψ0g) = 0

and so the BF and RB would agree in the continuous case

- but that is not what is recommended in the continuous case where
ΠΨ(fψ0g) = 0
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- rather it is recommended that the prior Π be changed by specifying
(i) a prob. p 2 (0, 1)
(ii)a conditional prior Π�(� j H0) for θ 2 H0 = Ψ�1fψ0g
(iii) a conditional prior Π�(� j Hc0 ) for θ 2 Hc0 (which is typically Π)
then use the prior (sometimes called a sharp prior)

Π� = pΠ�(� jH0) + (1� p)Π�(� jHc0 )

as then

BF (H0 j x) =
Π�(H0 j x)
Π�(Hc0 j x)

/
Π� (H0)
Π�(Hc0 )

=
p
R
H0
fθ(x)Π�(dθ jH0)

(1� p)
R
H c0
fθ(x)Π�(dθ jHc0 )

/
p

1� p =
m(x jH0)
m(x jHc0 )

which is a likelihood ratio

- in general BF (H0 j x) 6= RBΨ(ψ0 j x) and BF (H0 j x) su¤ers from
"information inconsistency" which RBΨ(ψ0 j x) does not
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Example location-scale normal

- fN(µ, σ2) : µ 2 R1, σ2 > 0g,Ψ(µ, σ2) = µ, H0 : Ψ(µ, σ2) = µ0 and
sample of n giving

L(µ, σ2 j x) = (2πσ2)�n/2 expf�[n(x̄ � µ)2 + s2]/2σ2

and prior (see Example 5.3.1 for elicitation of hyperparameters)

µ j σ2 � N(µ0, τ
2
0σ
2)

1
σ2

� gamma(α0, β0)

µ � µ0 +
q

τ20β0/α0t2α0

- then

RBΨ(µ j x) =

R ∞
0 L(µ, σ

2 j x)(τ20σ2)�1/2ϕ
�

µ�µ0
(τ20σ2)1/2

�
π(1/σ2) d(1/σ2)

m(x)π(µ)

RBΨ(µ0 j x) =

R ∞
0 L(µ0, σ

2 j x)(τ20σ2)�1/2ϕ (0)π(1/σ2) d(1/σ2)

m(x)π(µ0)
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- with sharp prior

µ j σ2 � pδµ0
+ (1� p)N(µ0, τ20σ2)

1
σ2

� gamma(α0, β0)

µ � pµ0 + (1� p)π(µ)

so

BF (H0 j x) =
R ∞
0 L(µ0, σ

2 j x)π(1/σ2) d(1/σ2)

m(x)
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